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Inversion of coherent X-ray diffraction patterns allows the imaging of three-

dimensional density distributions. The recovery of such shapes often requires

application of iterative algorithms, such as Fienup’s error reduction or hybrid

input/output. Since the measurement of such a pattern records the intensity

in reciprocal space, any errors due to noise will probably not have a

straightforward impact on the final real-space result. In this paper, the effect

of the types of noise common in coherent X-ray diffraction (CXD) experiments,

counting statistics, scatter from alien particles and detector noise, on the

recovered real-space density projection is explored by simulating a two-

dimensional CXD pattern and adding noise. It is found that an R factor

measuring the reproducibility between the best and second-best real-space

result is a leading indicator of performance.

1. Introduction

X-ray diffraction is a powerful technique for resolving the

structure of materials. In traditional techniques, a sample is

illuminated by a beam containing many coherence volumes

resulting in diffraction that corresponds to an ensemble

average of domains within the sample. By contrast, if

diffraction resulting from the interaction of a single coherence

volume in the beam with the sample – so-called coherent

X-ray diffraction (CXD) – can be sufficiently measured, the

possibility to recover the three-dimensional shape of the

sample arises. In this latter case, the diffracted intensity in the

vicinity of a Bragg peak is related to the electron number

density, �ðrÞ, of the sample by

IðQÞ ¼
R

dr�ðrÞ expðiQ � rÞ
�� ��2; ð1Þ

where Q is the momentum transfer local to the Bragg point

(Warren, 1990). Therefore, equation (1) presents us with an

inverse problem: given the square modulus of the Fourier

transform of a function, what is the function? Essentially, the

problem reduces to one of finding a set of phases that are

consistent with the measured Fourier modulus, defined to be

the square root of the measured intensity, and some known

real-space properties of the object, such as a finite support.

It is extremely important to explore the uniqueness of a

solution to any inverse problem. In this particular problem,

the intensity is measured in one space and the object is known

to occupy only a finite portion of the other. As is customary in

the literature, we draw a distinction between trivial ambi-

guities and non-unique solutions. For example, if we measure

the modulus of the Fourier transform of a real-space function

f ðzÞ, jFðqzÞj, the trivial ambiguities (Bates, 1982) to f ðzÞ are a

translation, f ðzþ z0Þ, a constant phase offset, expði�Þf ðzÞ, and

the ‘twin’ image, f �ð�zÞ. Bruck & Sodin (1979) provide the

earliest work on the uniqueness of this problem. Their position

was reinforced by the work of Bates (1982) and that of

Barakat & Newsam (1984). The end result of this theoretical

work is that the uniqueness of solutions to the inverse problem

is highly dependent on the dimensionality of the problem. This

dependence on dimensionality arises because non-unique

solutions can occur when the diffracted amplitude is factor-

izable. Since a one-dimensional polynomial is always factor-

izable on the complex plane, the one-dimensional problem has

no unique solution, although it may have a unique physical

solution. In two dimensions and higher, factorizable poly-

nomials become very rare and therefore the problem gener-

ally has a unique solution (Bates, 1982). One of the principal

aims of this paper is to investigate whether the presence of

noise in a measured diffraction pattern is likely to result in

reconstructions that are not trivially related.

Iterative methods have been applied to this problem to

recover two-dimensional and three-dimensional images of

samples using coherent X-ray diffractive imaging (Sayre et al.,

1998; Miao et al., 1999; Robinson et al., 2001; Miao et al., 2002;

Williams et al., 2003). An example is the CXD pattern in Fig.

1(a) and the corresponding reconstructed projection of the

density of an Au microcrystal in Fig. 1(b). Reconstructions of
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this kind are made possible by ‘oversampling’ the diffraction

patterns. The oversampling ratio (Miao et al., 1998) is gener-

ally defined as

� ¼
size of the FFT array

portion occupied by object
ð2Þ

and must be larger than 2. This is essentially sampling the

intensity in accordance with Shannon’s theorem. An impor-

tant question that has not been completely answered is how

noise in CXD data affects the final real-space solution. The

effect of noise on stagnation and uniqueness has been

addressed by Seldin & Fienup (1990) and Miao et al. (1998) for

the case of Gaussian random noise. Here, we seek to discover

if the specific kinds of noise generally present in a CXD

experiment cause artifacts in the real-space objects that may

be confused for a physical feature. Specifically, we consider

noise from native – i.e. the Poisson distributed shot noise

inherent in the diffracted signal – and alien – defined as any

other source of X-ray scatter – scattering as well as noise

generated in a typical CCD detector.

2. Algorithms

The first algorithm for the recovery of �ðrÞ in this type of

experiment is due to Gerchberg & Saxton (1972). In their

experiment, both the scattering and an image of the sample

were available and the Gerchberg–Saxton (GS) algorithm

finds a solution by Fourier transforming a possible solution

between real and reciprocal space using the image in real

space and the measured scattering in reciprocal space as

constraints on the solution. This is a rather unusual situation

and is markedly different from the more common case in

which an image is typically not available. Fienup (1978) later

generalized the GS algorithm by showing that the real-space

constraint could be replaced by a priori physical knowledge –

such as the finite size of the object or that the diffracting

density is real positive. This new algorithm is called the

generalized GS or error reduction (ER) algorithm, due to its

equivalence – with a careful choice of real-space constraints –

to gradient search methods.

ER possesses several undesirable features. Most notably,

since it is similar to gradient search algorithms, it has a

tendency to stagnate in local minima of the error metric, which

is a measure of how well the reconstructed reciprocal-space

object matches the measured CXD data. A very common

stagnation arises from the tendency of the algorithm to

reconstruct different elements of the image and its twin

simultaneously. With this in mind, Fienup (1978) proposed the

hybrid input/output (HIO) algorithm, which modifies the

current iterate by using some fraction of the previous iterate.

More recently, Elser (2003) proposed the ‘difference map’

(DM) of which HIO is a special case. It is advantageous to

state DM in the context of projection operators acting on

N-dimensional vectors in a Hilbert space (Bauschke et al.,

2002). With such notation, a projector, �i, acts on an iterate,

the N-dimensional �n, in such a way that �i�n is the closest

point to �n lying within the set of all vectors satisfying the

constraint i. A solution to the inverse problem is a vector that

lies in the intersection of all of the constraint sets. In the case

of the commonly used real-space constraints – positivity (�þ)

and support (�s) – the set of all such vectors is convex. On the

other hand, the set comprised of all vectors that obey the
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Figure 1
(a) An experimental CXD pattern collected from Au crystals. (b) The
real-space density projection arrived at by reconstructing the complex
amplitude whose magnitude is shown in (a) using the iterative methods
described in the text. (c) A simulated density projection from a ‘crystal’.
(d) The Fourier transform of (c). Note the similarities between (a) and
(d). (a) and (d) are the logarithm of the ‘intensity’ while (b) and (c) are
linearly scaled.



Fourier modulus (�m) constraint is non-convex. Since this set

is not convex, it is difficult to construct an algorithm that

consistently finds the solution.

Traditionally, ER (Fienup, 1982) is stated

�nþ1ðxÞ ¼
�nðxÞ if �nðxÞ 2 S

0 otherwise,

�
ð3Þ

where the set S is all positive values inside the support

constraint. Using the notation above, it becomes (Bauschke et

al., 2002)

�nþ1 ¼ �sþ�m�n

¼ �s�þ�m�n: ð4Þ

DM is defined (Elser, 2003) to be

�nþ1 ¼ D�n ¼ ð1þ �½�ifj � �jfi�Þ�n; ð5Þ

where 1 is the identity and fi ¼ ð1þ �iÞ�i � �i maps �n onto a

point on the line connecting itself and its projection onto

constraint set i. Three real scalar coefficients are introduced:

�i, �j and �. In the context of the problem here, i would be s or

sþ and j is m. For the choice of �s ¼ �1 and �m ¼ 1=�,

equation (5) becomes HIO:

�nþ1 ¼ ½1þ ð1þ �Þ�s�m � �s � ��m��n: ð6Þ

In this paper, the behavior of DM with respect to the choice of

the scalars �, �1 and �2 is not explored. It has been our

experience that other choices of these parameters may also

lead to successful reconstructions. In this paper, we will report

the quantity �m�n as the result of our simulated noisy

experimental reconstruction. Generally, the progress of the

iterative methods are monitored by means of an error metric,

which is analogous to a crystallographic R factor (Prince, 2004;

Stout & Jensen, 1968). In this paper, we define the metric via a

sum over all elements in an array:

�2
¼

PN�1
k¼0 j�nðkÞ � �m�nðkÞj

2PN�1
k¼0 Ik

; ð7Þ

where �n is the real-space iterate on cycle n, �m�nðkÞ is the

iterate after application of the Fourier modulus constraint, and

Ik is the measured intensity in pixel k. This metric is the

traditional one and works very well for ER, where the Fourier

modulus constraint is strictly enforced on the iterate. In the

case of HIO-like algorithms, it is not appropriate to consider

the iterate as an estimate of the solution to the inverse

problem and so �2 will not reflect the error of the estimate as it

does for ER. Nevertheless, for the purpose of classification, we

will adhere to tradition and identify the ‘best’ reconstruction

as the one with lowest �2. To combat the propensity of the

algorithms to become stuck in local minima, it is common to

use multiple starting points. When utilizing this tactic, we may

define a second error metric in analogy to equation (7):

�b
a ¼

PN�1
k¼0 j½�m�

ðaÞ
n �ðkÞ � ½�m�

ðbÞ
n �ðkÞj

2PN
k¼0 Ik

: ð8Þ

We will calculate two quantities in this way: the reproducibility

of the two best reconstructions, in this case, the two best from

the five random phase sets generated, �2
1, and the fidelity of the

best reconstruction to the truth image, �o
1 . Defined this way, a

large �b
a indicates a poor agreement between the two objects

and �b
a ¼ 0 would be perfect agreement. The fidelity is the

most interesting quantity, but with experimental data we are

able to calculate only �2 and �2
1. �o

1 will be used to highlight the

discrepancy in the behavior of �2 for ER and HIO discussed

above and, as we will show, �2
1 is more useful than �2 in

predicting the success of the reconstruction.

3. Expected noise in CXD

The main question addressed in this paper is whether noise

increases the likelihood of measuring a factorizable CXD

pattern. This is particularly important since it is a necessary

condition for non-unique solutions to this problem that the

diffracted amplitude be factorizable, for example, given a

measurement jHðQÞj, if jHðQÞj ¼ jFðQÞjjGðQÞj, more than

one solution will exist corresponding to conjugation opera-

tions on the factors. Obviously, a noisy diffraction pattern is

not a Fourier transform of a meaningful object, but we also

seek to discover if the presence of noise is detrimental to the

progression of the reconstruction, i.e. if noise encourages

stagnation.

In an X-ray diffraction measurement, there is an inherent

uncertainty in the measurement of the number of arriving

photons governed by the Poisson distribution. Therefore, the

measurement at each pixel has an uncertainly that goes as

M1=2, where M is the number of photons measured. Further

noise is introduced by the detector and electronics necessary

to measure the signal (see, for example, Janesick, 2001).

Typically, a CCD detector is used for measurements of this

kind, since two-dimensional arrays are relatively inexpensive,

efficient and convenient. CCDs detect photon events by

measuring the number of electrons freed in the depletion

region of the chip by the collision of the photon with an

electron–hole pair. This gives rise to an uncertainty in the

number of electrons generated by a one-photon event given

by the Fano factor. CCD detectors also possess a ‘dark

current’ that is the result of electron–hole pairs splitting due to

thermal fluctuations. Complicating matters further, CCDs

tend to degrade and accumulate defects from radiation

damage with time and the dark current generated in these

regions may not be the same as in undamaged ones. There is

also electronic noise, e.g. 1=f noise, present in the measure-

ment. The final contribution to noise we consider is scattering

from alien scatterers. This may be scatter from the substrate,

incoherently illuminated sections of the sample, slit scatter or

air scatter.

4. Test object and trial conditions

In this paper, we seek to investigate the effects of these

experimental realities by means of a simulation. The pro-

cedure is as follows: (i) select the density projection of the

object being ‘measured’; (ii) calculate the fast Fourier trans-
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form (FFT) of the object; (iii) select the number of photons

present in the measurement; (iv) using the FFT from (ii)

calculate the intensity for use as a probability for determining

the location of photons; (v) based on the integrated intensity

in (iv) and the number of photons in (iii), calculate the average

intensity per photon; (vi) at each pixel in the simulated CXD

pattern, draw a number from a Poisson random distribution

with mean given by the intensity in that pixel divided by the

average intensity per photon. The result is an image with the

inherent Poisson distributed noise that would be observed in a

perfect measurement. This image is then converted from

photons to an integer number of ‘analog to digital units’

(ADUs) mimicking what happens in an actual experiment. In

the simulations here, the exact number of ADUs is drawn

from a Gaussian random distribution with mean and width

consistent with CXD data. The simulated pattern in Fig. 1(d)

was generated in this way from the real-space density

projection in Fig. 1(c). At this point, we are free to add alien

scattering or bias to the pattern.

Alien scattering is assumed to be spatially uniform, so that

no pixel is more likely to receive scatter than any other. This

might correspond to air scatter in an experiment. The scatter is

generated by assuming a mean number of photons per pixel,

here between 0.005 and 0.5, which specifies the mean for a

Poisson random distribution from which the actual simulated

scatter is drawn. We then convert this integer number of

photons to ADUs. A bias level would primarily arise from the

dark current of the CCD. From the experimental data, we can

derive the width of a Gaussian distribution from which we

draw the actual bias contribution in ADUs. Here, a large mean

is chosen, corresponding to a long exposure. A number is

drawn from this distribution for each pixel and then a mock

background subtraction is carried out. This consists of

subtracting some constant from every element of the array.

One departure from reality is that fractional ADUs from the

bias and subtraction are allowed.

The object in Fig. 1(c) shows very good agreement between

its simulated diffraction (Fig. 1d) and the diffraction measured

from a small gold crystal (Fig. 1a); however, this shape is

suboptimal because it is very symmetric, making it difficult to

determine when stagnation due to mixing with its twin has

occurred. So instead we use the object in Fig. 2(a), which is

asymmetric and has very smooth edges. This latter feature

reduces the aliasing common to FFTs. Fig. 2(c) is the FFT of

the shape and is used to calculate Fig. 2(d), the simulated CXD

pattern with 9� 104 photons. Our experience is that CXD

patterns with this number of photons can be collected in

exposure times of tens of seconds for micrometre-sized

objects. The utility of simulating a pattern from scratch, rather

than adding noise to an existing data set, is that we can

generate a ‘truth image’ to compare the reconstruction to. This

is created by allocating a certain number of photons to a

pattern while keeping the phase of the complex amplitude

from the FFT for pixels that receive at least one photon. This

complex finite-photon pattern is back transformed to generate

the truth image. Fig. 2(b) is the truth image for those tests with

9� 104 photons. As an illustration, Figs. 2(e) and ( f) are

simulated patterns with high levels of alien scattering and

added bias, respectively.

We assign a signal-to-noise ratio calculated as

SNR ¼

PN�1
k¼0 IkPN�1

k¼0 ðIkÞ
1=2 þ Pk þ Bk

; ð9Þ

where Ik is the number of ADUs in a pixel generated by the

six-step procedure above, Pk is the signal due to photons

scattered into the detector by alien sources and Bk is the bias

level arising from the detector and electronics. It is not

expected that different kinds of noise will produce the same

result in the reconstructed real-space image, so the SNR in

one test may not yield equivalent results in another.

5. Tests

Here, we examine the effect of three scenarios on the quality

of the reconstruction: finite photon number, alien scattering
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Figure 2
(a) A simulated density projection chosen for its smooth edges and non-
symmetric shape. (b) The truth image when 9� 104 ‘photons’ are present
in the simulated CXD pattern. (c) The Fourier transform of (a) (log-
scaled ‘intensity’’ shown). (d) The simulated CXD pattern with
9� 104 photons and the Fourier transform of (b) (log-scaled ‘intensity’
shown). (e) The simulated CXD after adding alien scattering noise. ( f )
The simulated CXD pattern adding bias, as from the detector back-
ground.



collected in the detector, and finite bias levels in the data due

to detector noise. For each of the tests in this section, the

standard procedure was to perform five reconstructions for

each algorithm at each noise level. In xx5.1–5.3, 500 iterations

were performed and, in x5.4, 300 were performed. Each of the

five reconstructions starts with a different set of random

phases. The HIO parameter � was held constant in xx5.1–5.3 at

1 and is varied in x5.4. For each reconstruction and algorithm,

three values are reported: the error metric, �2, the reprodu-

cibility, �2
1, and the fidelity to the truth image, �o

1 . The simulated

patterns were generated in a 256� 256 pixel array. The

reconstruction was carried out in the same array size. The real-

space support constraint was 60� 70 pixels and ER and HIO

both required that the reconstructed density be real positive.

Fig. 2(d) was used as the Fourier modulus constraint.

An interesting, albeit purely qualitative, result is that a

noisy simulated CXD pattern often gives rise to a real-space

density projection that also appears ‘noisy’. Fig. 3 is a collec-

tion of real-space best reconstructions resulting from such

simulated patterns. In this context, we regard the smearing of

boundaries and the apparently random internal density

modulations as defining characteristics of a noisy real-space

image. The first two panels, denoted (a) and (b), are the best

result of an ER-only routine using alien-scatter-added CXD

patterns as input. The next two panels are the result of

reconstructing an imperfectly background subtracted simula-

tion with ER only and HIO only, demonstrating that HIO also

possesses this characteristic. The final two panels are the best

reconstructions to a perfectly background subtracted simula-

tion reconstructed with only HIO and different �s. An

important characteristic of these solutions is that comparison

with the second-best result reveals that the pattern of internal

contrast is not reproducible.

5.1. Photon number

Varying the number of photons in a simulated pattern

between 9� 104 and 109 gives SNR between 290 and

2:3� 104. Fig. 4(a) shows the trends of �o
1, �2

1 and �2 with

decreasing SNR. The graph shows a clear trend of increasing

error metric with decreasing SNR as expected. The �o
1 values

are more interesting, as they remain more or less constant for

reconstructions using HIO until SNR ¼ 103, whereupon the

fidelity rapidly degrades. The procedure using ER produces

worse estimates of the truth image and, while the trend of �o
1

with SNR is less clear, there is a modest increase as SNR

decreases.
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Figure 3
Real-space results from the reconstruction of noisy data demonstrating
that the addition of noise in the simulated CXD pattern can lead to a
‘noisy’ appearance in the real-space result. Shown is the best result from
each test where the support was the region displayed. (a) and (b) are the
result of reconstructing data with alien scatter with Poisson means of
0.05 and 0.5 per pixel using only ER. (c) and (d) are the result of
reconstructing the bias-added simulation with 95% background
subtracted using only ER and only HIO. (e) and ( f ) are the result of
reconstructing the bias-added simulation with 100% background
subtraction using only HIO with � ¼ 0:2 and � ¼ 0:5.

Figure 4
Scatter plots of reproducibility �2

1, fidelity �o
1 and error metric against SNR

for the three tests of noise level described in the text. Lower values of all
three quantities defined in the text indicate better agreement. As
expected, as photon number increases (a), the estimate of the truth object
becomes more accurate. (b) shows that added alien scatter produces a
more or less linear relationship between SNR and �o

1 . Added bias, (c), also
produces a linear dependence, but with a much smaller slope, indicating
the algorithms do not perform as well in this case as in the case of alien
scattering. Finally, we note that the behavior of �2

1 more closely mirrors
the behavior of �o

1 than does �2, revealing its importance as an indicator of
a correct solution in the presence of noisy diffraction data.



For the lowest values of SNR, ER and HIO reconstructions

seem to give roughly equivalent estimates of the simulated

pattern. We also see that �2 is deceiving, inasmuch as its value

is always better for reconstructions using ER than those using

HIO, which is not the trend we see in the measure of fidelity to

the truth image, �o
1 . In other words, this is a demonstration of

the assertion in x2 that �2 is not an ideal metric for HIO. An

encouraging result is that �2
1 seems to be a much better indi-

cator of �o
1 than is �2. For the next two sections, we choose the

worse case – the simulated pattern with SNR ¼ 290 – for

investigating the effect of alien scatterers and added bias

levels. This case is similar to the experimental data in Fig. 1,

where we estimate that 2� 105 photons were captured.

5.2. Alien scatter

Specifying a mean number of alien photons between 0.0005

and 0.5 per pixel, as described above, yields simulated patterns

with SNR between 296 and 3. Fig. 4(b) shows the result from

reconstructing these simulations. In this case, ER and HIO

procedures both display a roughly linear dependence of

increasing �o
1 and �2

1 with decreasing SNR. It is interesting to

note that, in this case, �2 for HIO is essentially unaffected by

increasing noise while �o
1 grows steadily worse. �2 for ER in

this case tracks with �o
1 and �2

1 correctly indicating that the

reconstruction quality is decreasing. In all, HIO arrives at a

better estimate of the truth image and we again see that �2

does not predict the quality of the HIO reconstruction.

5.3. Added bias

By adding a bias level generated by drawing a different

number from a Gaussian random distribution about a

common mean for each pixel and then subtracting a common

constant from every pixel, we mimic the noise inherent in a

background subtraction from our CCD detector. Fig. 4(c)

summarizes the result of reconstructing simulated patterns

with background subtraction of 0, 10, 30, 50, 70, 90, 95, 99 and

100% of the mean of the Gaussian distribution, which yields

SNR between 0.4 and 52. In this case, �2 is a very poor indi-

cator of a good reconstruction. In fact, �2 is seen to decrease

slightly with decreasing SNR, which is very misleading. By

contrast, �o
1 and �2

1 track together and increase more or less

linearly with decreasing SNR, as expected. Again, HIO

produces slightly better agreement with the truth image than

ER. It is interesting to note that the linear dependence of

increasing �o
1 with decreasing SNR is steeper for the case of

added bias than for the case of alien scattering. This seems to

indicate that the algorithms are less tolerant of a bias level

than of random alien scattering.

5.4. Mixing algorithms

It has been reported previously that a combination of HIO

and ER is particularly effective (Fienup & Wackerman, 1986)

and this procedure has been used to reconstruct experimental

data (Robinson et al., 2001; Williams et al., 2003). It is, there-

fore, interesting to investigate the effect of the � parameter in

such a combination. To see if there exists a particular � for

which an ER/HIO combination outperforms ER and HIO

separately, we choose a high SNR simulated pattern (with

5� 106 photons) and conduct five reconstructions as above

except that the reconstruction recipe is now 150 iterations of

ER, 50 HIO and 100 ER rather than 500 of either of the

algorithms alone. Fig. 5 displays the result of these trials.

For reference, the HIO-only reconstruction of this pattern

resulted in: ð�2Þ1=2 ¼ 0:19, ð�2
1Þ

1=2 ¼ 0:04, ð�o
1 Þ

1=2 ¼ 0:08. The

ER-only gave: ð�2Þ1=2 ¼ 0:03, ð�2
1Þ

1=2 ¼ 0:43, ð�o
1 Þ

1=2 ¼ 0:13.

These values are in line with the trends above, �2 for HIO

remains high but �2
1 tracks �o

1. That �2 for the best ER

reconstruction is low while �2
1 remains high is indicative of the

propensity for ER to become trapped in local minima, that is,

only one of the starting guesses was able to find a good esti-

mate in this number of iterations. As the graph shows, a

negative �, while permitted by DM, is not favorable under

these conditions. For positive values of �, the combination

algorithm outperforms ER- and HIO-only procedures for

almost every �, including � ¼ 1, the value used in x5.1. The

results are not acutely sensitive to the value of � but appear to

be best in the range 0:5<�< 1:0. This is consistent with our

experience in reconstructing CXD data.

6. Conclusions

In using iterative methods to recover lost phase information

from a CXD imaging experiment, it is imperative to consider

the effect of noise on the resulting recovered phases before

making quantitative statements about the sample. For this

purpose, we have simulated a noisy CXD pattern to investi-

gate the type and severity of artifacts introduced by the
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Figure 5
Scatter plot of reproducibility �2

1 and fidelity �o
1 against SNR�1 for various

values of the HIO � in a typical combination of ER and HIO, as described
in the text. The combination performs best when � is chosen to be a little
less than 1.



presence of noise. We have shown that, while �2 alone may not

indicate a good estimate of the truth image, the combination

of �2 and the calculable reproducibility �2
1 should allow the

safe identification of a good estimate to the generally

unknown truth image. We have also demonstrated that �2 is

not, in general, a good metric for HIO. This is hardly surprising

in that the iterate is not to be regarded as a potential solution

in this scheme.

Of further interest is whether noise is likely to cause

meaningful non-uniqueness of the final solution. Since �o
1 and

�2
1 tend to behave in the same way, it seems that noisy data

increase the number of solutions that agree with the data

equally well. However, these are not multiple solutions in the

broadest sense; rather, they manifest themselves as fluctuation

about or variations on the truth image not unlike a real-space

‘noise’. Therefore, it may be reasonable to use multiple poor

solutions to form a most likely solution, depending upon the

situation. In our comparison of different kinds of noise, we see

that scattering from alien sources is troublesome, but it may be

ignored if its presence is not overwhelming. For example, a

simulation in which on average 1 of every 20 pixels contains a

photon scattered from an alien source induces RMS errors of

about 10%. Additional background is more harmful. Not only

does the fidelity grow worse more quickly with our measure of

SNR, but ER – and to some extent HIO – will allow vortices

(phase singularities) in the reciprocal-space amplitude or,

equivalently, stripes (Fienup & Wackerman, 1986) in the real-

space density projection. These stripes might be mistaken for

actual physical phenomena, so care must be taken when a

good background subtraction is not performed. Even so,

assuming vortices are not formed, the resulting reconstruction

is not materially different from the truth image when a bias

level is present. Therefore, a good reconstruction with a bias

level present is still a good reconstruction, albeit one with a

large zero-order Fourier component arising from the high

average value of the reciprocal-space pattern.

As expected, simulations with large numbers of photons

allow a better estimate of the truth object. Interestingly, in the

case of shot noise alone, a low �2 during HIO seems to imply a

good reconstruction, but is deceiving in the presence of other

contamination. Fortunately, at a third-generation synchrotron,

count rates are typically very high and can be increased for

small samples through the use of focusing optics. Therefore,

we expect that the number of photons in the simulations

presented here are realistic for a broad variety of samples that

can be measured in modern synchrotron experiments.

It has been shown that combinations of ER and HIO are

highly effective at increasing both the reproducibility of

reconstructions and the fidelity to the truth object. Several

strategies may be employed to further enhance the quality of

the reconstructions presented here. For example, HIO is

extremely sensitive to the tightness of the support constraint.

In this paper, we have not altered the support, which has been

reported to improve the result of the reconstruction (March-

esini et al., 2003).

Lastly, it must be said that these results may depend to some

extent on the kind of object or real-space density projection

chosen. We chose a single compact object with smooth edges.

Further, it possesses a highly asymmetric shape and is purely

real. Nevertheless, it seems that realistic levels of noise in

simulated data generated in agreement with experimental

CXD data do not materially hamper the effectiveness of ER,

HIO or ER/HIO combinations.
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